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Abstract

A new mathematical model of a mechanical draft cooling tower performance has been developed. The model

represents a boundary-value problem for a system of ordinary differential equations, describing a change in the droplets

velocity, its radii and temperature, and also a change in the temperature and density of the water vapor in a mist air in a

cooling tower. The model describes available experimental data with an accuracy of about 3%. For the first time, our

mathematical model takes into account the radii distribution function of water droplets.

Simulation based on our model allows one to calculate contributions of various physical parameters on the processes

of heat and mass transfer between water droplets and damp air, to take into account the cooling tower design para-

meters and the influence of atmospheric conditions on the thermal efficiency of the tower. The explanation of the in-

fluence of atmospheric pressure on the cooling tower performance has been obtained for the first time.

It was shown that the average cube of the droplet radius practically determines thermal efficiency. The relative

accuracy of well-defined monodisperse approximation is about several percent of heat efficiency of the cooling tower. A

mathematical model of a control system of the mechanical draft cooling tower is suggested and numerically investi-

gated. This control system permits one to optimize the performance of the mechanical draft cooling tower under

changing atmospheric conditions.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical draft cooling towers are widely used in

industry for deep cooling of circulating water [1–3]. The

height of the mechanical draft cooling towers can vary

from 2 to 12 m. Basic elements of such cooling towers

are shown in Fig. 1: the shell, water distribution system,

water-collecting pond and the fan to create an artificial

draft.

In this paper we consider the heat and mass transfer

processes in a mechanical draft cooling tower, where

only a water droplet flow takes place, and there are no

jet or film flows.

In our previous publication, we considered only

monodisperse ensemble of droplets [4]. In the cooling
* Corresponding author. Tel.: +375-17-284-2222; fax: +375-

17-232-2513.

E-mail address: fsp@hmti.ac.by (S.P. Fisenko).

0017-9310/$ - see front matter � 2003 Elsevier Ltd. All rights reserv

doi:10.1016/S0017-9310(03)00409-5
tower a polydisperse ensemble of droplets is formed by

nozzles, which spray water. In this work, the size dis-

tribution of droplets and elements of two-dimensional

aerodynamics of a mechanical draft cooling tower are

taken into account. This allows one to explain a variety

of experimental data.

In [5], a mathematical model of the cooling tower

performance is presented, which allows calculation of

the two-dimensional internal aerodynamics of the cool-

ing tower. However, the description of the kinetics of

phase transition during evaporative cooling is simplified.

The modern level of the description of these processes is

presented in [6].

Although in industry the cooling towers with rather

wide distribution of droplet radii are used, in the vast

majority of simulations of evaporative cooling the ap-

proximation of monodisperse ensemble of droplets is

used. Our new approach allows one to determine the

limits of applicability of this approximation for the pro-

blems of evaporative cooling. It is worth to note, that the
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Nomenclature

C coefficient of aerodynamic drag, dimen-

sionless

c specific heat (J kg�1 K�1)

D diffusion coefficient for water vapor (m2/s)

Dt dispersion of temperature (K2)

F function

f distribution function

g free fall acceleration (m/s2)

H height (m)

h height of air window (m)

L cooling tower width (m)

m mass of droplet (kg)

N number of groups, dimensionless

Nd the number of droplets per unit volume (m�3)

P atmospheric pressure (Pa)

Q air mass flow rate (kg/s)

Qa specific air mass flow rate (kg/m2 s)

Qw specific water mass flow rate (kg/m2 s)

R droplet radius (m)

r latent heat of vaporization (kJ kg�1)

S informational entropy, dimensionless

S1 cross-section area of outlet (m2)

T temperature (�C)
T1 required temperature (�C)
u velocity of air (m/s)

W power per unit cross-section (kg/s3)

x coordinate in horizontal direction

z coordinate in vertical direction

Z normalization constant

Nu Nusselt number

Re Reynolds number

Greek symbols

a heat transfer coefficient (Wm�2 K�1)

b Lagrange multiplier

D difference

d Lagrange multiplier

c mass transfer coefficient (m s�1)

g thermal efficiency of a cooling tower, di-

mensionless

ka thermal conductivity of air, (W/m �C)
la dynamic viscosity of air (kgm�1 s�1)

q water vapor density (kg/m3)

qa air density (kg/m3)

qw water density (kg/m3)

r surface tension of water (kg s�2)

sd relaxation time of droplet temperature (s)

v droplet velocity in z direction (m/s)
v0 droplet velocity in z direction in stagnant air

(m/s)

v1 droplet velocity in z direction in upward air
(m/s)

w relative humidity of air, dimensionless

R residual, dimensionless

Subscripts

0 initial

a air

d for droplet

f final

i index

lim limiting

s saturated

w water

theor theoretical

exper experimental

h� � �i mean
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pilot model of the microcooling tower with monodisperse

droplet distribution has recently been created [7].

For simulation of evaporative cooling of water in the

mechanical draft cooling tower, we use the results ob-

tained for a natural draft cooling tower [8]. The solution

of a boundary-value problem for two phases moving in

the opposite directions gives a complete description of

evaporative cooling of droplets. As droplets fall down,

the water evaporates and convective heat transfer with a

colder air occurs. With increase in the velocity of

droplets, the time of interaction with a ‘‘fresh’’, colder

air is reduced. On the other hand, as air ascends it is

heated and saturated with water vapor. This reduces the

intensity of heat and mass transfer of droplets during

evaporative cooling.
In a one-dimensional approximation, the average air

velocity u is considered constant over the height and

section. The air flow velocity u is determined by the fan
power and the total aerodynamic drag. In contrast to

natural draft cooling towers, where the velocity of con-

vection depends on the degree of air heating and its

saturation of it with water vapor.

In a cooling tower the processes of heat and mass

transfer depend on the specific mass flow rates of water

Qw and air Qa, temperature Ta0 and relative humidity w
of the air entering into the cooling tower, temperature of

the water Tw0 entering into the cooling tower, wind ve-
locity and atmospheric pressure [9].

We characterize the efficiency of evaporative cooling

by means of the dimensionless parameter g [1]:



Fig. 1. Scheme of the mechanical draft cooling tower: (1) fan,

(2) pipeline, (3) water distribution system with spraying nozzles,

(4) stagnant zone, (5) edge of stagnant zone, (6) entering air and

(7) water-collecting pond.
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g ¼ Tw0 � Twf
Tw0 � Tlim

; ð1Þ

where Tw0 is the temperature of hot water entering into
the cooling tower, Twf is the average temperature of the
cooled water in the pool of the cooling tower, Tlim is the
limiting temperature of evaporative cooling of water for

the given air temperature Ta and its relative humidity w.
The value of Tlim is equal to the wet-bulb temperature

and is obtained from the condition

qsðTaÞ � w ¼ qsðTlimÞ; ð2Þ

where qs is the density of saturated vapor, dependent on
temperature and Ta is the temperature of the neighbor-
ing cooling tower air.

We note that in the case of monodisperse distribution

of droplets the average water temperature Twf coincides
with the final temperature of the droplets. When the size

distribution of droplets and nonuniformity of air flow in

the cooling tower are taken into account, the calculation

of the water average temperature in the pool is rather a

complex problem.
2. Elements of internal aerodynamics of the mechanical

draft cooling tower

Averaged air velocity u, calculated according to the
continuity equation in the integral form, is:
u ¼ Q=ðqaL2Þ; ð3Þ

where Q is the air mass flow rate through the cooling

tower defined by the fan and dependent on the air

density qa; L is the length of the cooling tower side

(assuming that a cooling tower has the square cross-

section).

The velocity of the air leaving the cooling tower uf is

uf ¼ Q=ðqaS1Þ; ð4Þ

where S1 is the area of the cooling tower exit. Since
S1 < L2, it follows from (3) and (4) that the air velocity

distribution in the cooling tower is nonuniform. More-

over, at the inlet to the air window of the cooling tower a

vertical velocity of air is practically equal to zero,

whereas the average inlet horizontal velocity v of air is
equal to

v ¼ u
L
4h

; ð5Þ

where h is the height of air windows.
As is shown in Fig. 1, in a mechanical draft cooling

tower air turns similarly to the turn in an evaporative

cooling tower [10]. Stagnant zones with vortex structures

are expected because of the narrowing of the air flow at

the top of the cooling tower. Some geometric sizes of

such a vortex structure can be estimated from the picture

of streamlines in Fig. 1.

In the approximation of an incompressible medium,

we use the continuity equation [11]

ovðx; zÞ
ox

þ ouðx; zÞ
oz

¼ 0: ð6Þ

Substituting-averaged values of air velocity compo-

nents in (6), we have the following estimation for the

relationship between the cooling tower height H and its

width L [12]:

H
L
	 2

4hL
S1

: ð7Þ

Eq. (7) establishes the relationship between basic

geometric parameters of a mechanical draft cooling

tower. Usually in engineering practice, the total area of

air windows is equal to the area of the cooling tower exit

orifice. It follows from Eq. (7) that to attain good

aerodynamic quality the cooling tower height should be

approximately twice larger than its width.

It is obvious that the large-scale nonuniformity of air

velocity distribution causes nonuniform cooling of water

droplets in a cooling tower. Consideration of this effect

requires the development of a two-dimensional aerody-

namic model of cooling tower performance.

To obtain a more precise characteristic of the air

velocity distribution in a mechanical draft cooling tower,

we introduce the velocity uðzÞ averaged over the cone
cross-section inside the cooling tower, where z is the



Fig. 2. Possible range of droplets radii versus upward flow air
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vertical distance from the fan level. Thus, we can esti-

mate the influence of the nonuniform flow structure on

the efficiency of evaporative cooling. Using the conti-

nuity equation after simple geometric calculations, we

get the following expression for the air flow velocity:

uðzÞ ffi uf
p½H � h�2

2½H � hþ zðL
ffiffiffiffiffiffiffiffiffiffiffiffi
p=2S1

p
� 1Þ�2

: ð8Þ

As it follows from Eq. (8), the air velocity decreases

with increase in the distance from the fan. The results of

the simulation of evaporative cooling of droplets in this

field of air velocity will be discussed below. It is obvious

that for droplets of different radii the influence of the

nonuniformity of the air velocity field should differ sig-

nificantly.
velocity: curve 1 is for maximum possible droplets radius and

curve 2 is for minimum.

Fig. 3. Radius distribution function of droplets.
3. Mathematical model of evaporative cooling of droplets

For a mathematical model of evaporative cooling of

droplets, it is important to know the distribution of the

radii of the droplets. In a mechanical draft cooling tower

droplets are formed by water spraying nozzles. The radii

of droplets depend on the water flow rate and water

temperature in the cooling tower: the larger the water

flow rate, the smaller sizes of droplets because of the

higher pressure drop in the nozzles. The water temper-

ature affects the surface tension, which substantially

determines the character of water spraying. Our calcu-

lations show that the dependence of the radius of

droplets on hydraulic loading is determined by design

features of the spraying nozzle and is not connected with

breaking of droplets. Even at the maximal hydraulic

loading of cooling tower the droplets velocities at nozzle

exit is insufficient for their breaking.

In a counter-current cooling tower of any type the

maximum and minimum radii of droplets are deter-

mined, correspondently, by splitting of large droplets

and carrying away of small droplets by an air flow. The

maximum radius of the droplet falling with the relative

velocity v in a humid air flow is determined from the

condition of equality of the drag force and surface ten-

sion force. Droplets with radius R are not broken, if the
following inequality is valid [13]:

R6 2:3
r

qav2
; ð9Þ

where r is the surface tension of water. We note that

with increase in the temperature the surface tension of

water decreases. This effect must be taken into account

in studies of evaporative cooling [8].

The minimal size of the droplets participating in the

process of evaporative cooling depends on an upward

air flow velocity u. If the drag force due to relative

motion of a droplet and air is larger than the gravity,
which is valid for rather small droplets, they are carried

away by the ascending air flow.

In Fig. 2 the range of possible radii of water droplets

falling in a mechanical draft cooling tower is shown

versus the upward air flow velocity. Curve 1 corresponds

to the largest possible radii of droplets, which are found

from Eq. (9), and curve 2 is for minimally possible radii.

As is seen from Fig. 2, in the mechanical draft cooling

tower the droplets have the radii with values between

curves 1 and 2. If the radius of a droplet is in the area

above curve 1, such a droplet is broken up by air flow;

the droplet is carried away by upward air flow from the

cooling tower if the radius of the droplet is in the area

below curve 2.

In the case of a polydisperse ensemble of droplets, we

have to deal with some size distribution function of

droplets (Fig. 3). However, such an approach makes the

mathematical description much more complex, there-

fore, to simplify the problem, we use the following
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technique. The range of radii of the droplets is divided

into N groups, where N is an arbitrary integer parame-

ter. For each intermediate group we replace the actual

distribution of droplets by a monodisperse one, with the

radius being equal to the average radius for the given

group of droplets. The total number of droplets in every

group is constant. For two extreme groups, i.e., of the

largest and smallest radii, we accept the value of the

largest radius and of the smallest one. It is natural that

the smaller the range of change of radius in the group,

the more exact is the description of disperse phase be-

havior. These questions in more detail are considered

in the Appendix.

The following physical assumptions are assumed in

our model of evaporative cooling of droplets: droplets

have a spherical shape; an approximation of average

droplet temperature is used. Besides the semi-empirical

dependences of the heat and mass transfer coefficients of

a droplet in a gas flow and coefficient of aerodynamic

drag, all depending on the Reynolds number for drop-

lets.

Let us now describe the mathematical model of

evaporative cooling of water droplets. We direct the z-
axis vertically downward and fix the coordinate origin at

the point of the beginning of droplet fall. The falling

droplet experiences the action of the gravity force and

force of aerodynamic drag, which determines the change

in the velocity of droplets and their density per volume

unit. As a rule, for small size for mechanical draft

cooling towers velocities of droplets are increased mo-

notonously during their fall. The system of the differ-

ential equations includes N equations that describe a

change in the radii of droplets RiðzÞ due to evaporation:
dRiðzÞ
dz

¼ � cðReiÞ½qsðTwiðzÞÞ � qðzÞ�
qwviðzÞ

ð10Þ

and N equations that, determine a change in the veloc-

ities viðzÞ of the falling droplets:

dviðzÞ
dz

¼ g
viðzÞ

� CðReiÞ
qa½viðzÞ � uðzÞ�2

2viðzÞ
pRiðzÞ2

mi
: ð11Þ

We note that allowance for the accelerated motion of

droplets is of great importance for relatively small me-

chanical draft cooling towers, because the droplets has

no time to reach the steady-state velocity. For large

droplets, Eq. (11) can be solved at constant value of

droplet radius, because the droplet radius changes less

than 1% due to evaporation.

We have N equations, describing a change in the

volume-averaged temperature of the droplets TwiðzÞ:
dTwiðzÞ
dz

¼ 3faðReiÞ½TaðzÞ � TwiðzÞ� þ ð�cðReiÞÞðr � cwTwiðzÞÞbqsð
cwqwRiðzÞviðzÞ
To calculating the change in the temperature of

humid air TaðzÞ, the equation has the form

dTaðzÞ
dz

¼ 4p
qaca

XN
i¼1

RiðzÞ2NdiðzÞ
ðviðzÞ � uðzÞÞ ½aðReiÞ½TaðzÞ � TwiðzÞ��:

ð13Þ

It is worth to note that the rate of change of air

temperature is directly proportional to the total inter-

facial surface area,
PN

i¼1 4pR
2
i Ndi, and is inversely pro-

portional to the relative velocity of phases.

The equation that describes a change in the density of

water vapor qðzÞ in the air–vapor mixture is:

dqðzÞ
dz

¼ �4p
XN
i¼1

RiðzÞ2NdiðzÞ
viðzÞ � uðzÞ cðReiÞ½qsðTwiðzÞÞ � qðzÞ�:

ð14Þ

The boundary conditions for the system of Eqs. (10)–

(14) are:

At z ¼ 0 (point of beginning of droplet fall) the fol-

lowing values are defined for:

droplets radii

Rijz¼0 ¼ Ri0; ð15Þ

temperatures of droplets for each group

Twijz¼0 ¼ Twi0; ð16Þ

initial velocities of droplets (for simplicity we consider

them to have the same value)

vijz¼0 ¼ v0: ð17Þ

At z ¼ H :

the air temperature

Tajz¼H ¼ Ta0; ð18Þ

the density of the water vapor in the air

qjz¼H ¼ q0: ð19Þ

Thus, the system of ordinary differential equations

(10)–(14) and boundary conditions (15)–(19) represent

the nonlinear boundary-value problem.

Attention is to be drawn to the fact that in our model

the influence of the number of droplets per unit volume

on the parameters of humid air is taken into account.

The number of droplets per unit volume, NdiðzÞ is de-
fined by the specific water flow rate Qwi, the sizes Ri of

droplets and their velocities vi as
TwiðzÞÞ � qðzÞcg
: ð12Þ



Fig. 4. Droplet temperature drop DTw versus droplet fall height
H : (�) experimental values [15] and (þ) calculated values.

Table 1

Dependence of the ratio of calculated droplet temperature drop

ðDTwÞtheor and experimental drop ðDTwÞexper versus droplet fall
height H

Droplet fall height H , m 0.5 1.5 3.0

ðDTwÞtheor=ðDTwÞexper 0.9 0.9 1.0
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NdiðzÞ ¼
3Qwi

4qwpR3i viðzÞ
: ð20Þ

It follows from Eq. (20) that the number of droplets

per unit volume decreases with increase in velocities of

droplets at a constant water flow rate. As a rule, for

mechanical draft cooling towers [2,3] the hydraulic loads

are such that the average distance between droplets is

much greater than their diameter. This fact taken into

account in our mathematical model by using the heat

and mass transfer coefficients obtained for a single

droplet. We define the average droplet radius as follows:

hRi ¼
PN

i¼1 RiQwiPN
i¼1 Qwi

¼
PN

i¼1 R
4
i NdiPN

i¼1 R
3
i Ndi

: ð21Þ

Similarly, the formula for the average temperature of

droplets is determined as

hTwi ¼
PN

i¼1 TwiQwiPN
i¼1 Qwi

¼
PN

i¼1 TwiR
3
i NdiPN

i¼1 R
3
i Ndi

; ð22Þ

where Qwi is the water mass flow rate for droplets of

radius Ri.

In accordance with the results of [13], the coefficient

of heat exchange of a droplet with the air medium,

aðReiÞ, was determined from the following dimensionless

relation:

Nu ¼ 2þ 0:5Re0:5: ð23Þ

For droplets from the ith group, the Reynolds

number is defined as

Rei ¼
2qaRijviðzÞ � uðzÞj

la
; ð24Þ

where la is the dynamic viscosity of air. The Nusselt
number is calculated as Nu ¼ 2RiaðReiÞ=ka.
Using the analogy between the heat and mass

transfer coefficients, the coefficient of mass exchange

cðReiÞ for a falling droplet with an ascending air flow is

determined as

cðReiÞ ¼
Dð2þ 0:5Re0:5i Þ

2RiðzÞ
: ð25Þ

The coefficient of aerodynamic drag force of a

droplet CðReiÞ, is calculated from formula [13]

CðReiÞ ¼
24

Rei
1

�
þ 1

6
Re2=3i

�
: ð26Þ

In numerical calculations we take into account the

temperature dependence of the diffusion coefficient of

water vapor in air, viscosity and thermal conductivity of

air. The temperature dependence of the transfer coeffi-

cients was calculated according to [14].

In approximation of the average droplet radius [4],

the results of comparison of our calculations with
available experimental data, obtained the still air [15],

are shown in Fig. 4. As it seen our model qualitatively

correctly describes the cooling of the water droplet

falling in air. The ratio of the calculated value of droplet

temperature change ðDTwÞtheor and experimental value

ðDTwÞexper for different heights of droplet fall H is given

in Table 1.

As seen from Table 1, the mathematical model allows

one to calculate the temperature of droplets. In fact, the

ratio of the calculated value of droplet temperature dif-

ference (DTwÞtheor and the experimental value ðDTwÞexper
for different heights of droplet fall H does not exceed

10%. Allowance for the weak free convection of air in the

laboratory rig always existing during experimental in-

vestigation one increases the relative accuracy 3% even

for small heights of fall.
4. Results of simulations

Before presenting numerical results, we give semi-

quantitative estimations [12] of evaporative cooling

of droplets in a mechanical draft cooling tower. These
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estimations are obtained by the approximate analytical

integration of the system of equations described above.

To change the droplet temperature DTw considering
its accelerated motion, we have the qualitative estima-

tion:

DTwi � fka½Ta0 � Tw0i� þ Dr½qsðTw0Þ�q0�gH 0:5u0:5R�3=2
0i :

ð27Þ

It is interesting to note that the temperature drop

DTwi is directly proportional to ðHuÞ0:5, which agrees well
with the data of numerical results presented below. We

emphasize that, as follows from (27), there is a strong

inverse dependence of DTwi on the initial droplet radius
R0i. After transformation of Eq. (27) the approximate
expression for the thermal efficiency g of a cooling tower
is:

g � ka
½Ta0 � Tw0i�

ðTw0i � TlimÞR0i

�

þ Dr
½qsðTw0iÞ � q0�
ðTw0i � TlimÞR0i

�
H
R 0i

� �0:5

u0:5: ð28Þ

It is seen from Eq. (28) that for a mechanical draft

cooling tower the thermal efficiency g depends on many
parameters; with the contribution of the second element

in Eq. (28) being the basic one. Since the diffusion co-

efficient D � 1=P , the thermal efficiency g depends on

atmospheric pressure [9,16], as confirmed by our calcu-

lations.

In the approximation of the monodisperse ensemble

of droplets of radius R, using qualitative description of
evaporative cooling and the dimensionality theory [17],

we have the formula

g ¼ F ðQw=Qa;H=R; ðTa0 � Tw0Þ=ðTw0 � TlimÞÞ: ð29Þ

The detailed analysis of expression (29) was carried

out in [4]. In particular, it was shown that the first two

arguments in Eq. (29) play the basic role in description

of the thermal efficiency g of the considered type of

mechanical draft cooling towers. It is worth noting that

formula (29), obtained on the grounds of the dimensi-

onality theory, enables one to substantially reduce the

number of computing experiments.

In computer experiments, the boundary-value prob-

lem of evaporative cooling of droplets (10)–(19) was

solved by the ‘‘shooting method’’ [18]. To obtain nu-

merical solution of the system of differential equations,

the Runge–Kutta method of the fourth order was used.

The accuracy was checked by means of the residual

criterion R:

RðTa0; q0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TaðHÞ � Ta0

Ta0

� �2

þ qðHÞ � q0
q0

� �2
s

;

ð30Þ
where TaðHÞ and; qðHÞ are the results of calculation of
the boundary-value problem (10)–(19). The solution of

the problem terminated as soon as the condition

R < 10�4 was fulfilled.

Following [12,13], it is possible to show that the

characteristic time of temperature relaxation inside the

droplet sd is connected with the convective flow of liquid
inside the droplet. This time can be estimated from the

formula

sd �
R
u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qa=qw

p
:

In particular, for a droplet of radius 1 mm and an air

flow velocity of 2 m/s, sd 	 10�2 s. Thus, the approxi-

mation of average droplet temperature is good enough

when investigating of evaporative cooling of water

droplets. This circumstance was used at development of

our mathematical model.

The calculated dependence of the thermal efficiency g
versus the dimensionless parameter H=R is shown in Fig.
5. It is seen that the dependence of the thermal efficiency

of a cooling tower on the height of droplet fall is non-

linear, which qualitatively corresponds to Eq. (28). The

effect of saturation arising because of the increase in

humidity and temperature of humid air with increase in

the parameter H=R is well seen. An increase in the ve-

locities of droplets with increase in their height of fall

also plays an important role, since the time of interac-

tion of droplets with a cold air is reduced.

The dependence of the thermal efficiency g on the

ratio between the mass flow rates of water and air Qw=Qa

is shown in Fig. 6. As this ratio increases, the thermal

efficiency of a cooling tower decreases. This is typical of

all cooling towers [9]. For mechanical draft cooling

towers the performance even at small values of the ratio
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Fig. 8. Relative humidity of air in a cooling tower: curve 1 is

for droplet radius R ¼ 0:5 mm, curve 2 is for droplet radius

R ¼ 1 mm and curve 3 is for relative humidity of entering air.

Table 2

Thermal efficiency for different values of droplet number at

different ranges

Number of droplets,

N0 � 10�5
5 9 0.7 49 9.7

Number of droplets,

N1 � 10�5
5 0.1 12 0.1 9.7

Number of droplets,

N2 � 10�5
2 3.3 0.097 1.8 0.45

g, % 57 51 66 68 66
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Qw=Qa is possible, which corresponds to small hydraulic

load or large air flow rate through the cooling tower.

The dependence of g on the radius of droplets is rather
strong and qualitatively corresponds to Eqs. (27) and

(28). It is interesting to note that the partial allowance

for two-dimensional aerodynamic effects, in accordance

with Eq. (8), practically does not change the average

value of the cooling tower thermal efficiency. Probably,

this fact can be explained by the integral nature of this

parameter.

The temperature profile of humid air for different

heights in cooling tower for various droplets radii is

displayed in Fig. 7. The droplets with rather small radii

rapidly cool down to Tlim and, as a result, cool air to the
temperature, which is lower than the temperature of

surrounding air. This effect was experimentally verified

in [19] and found interesting technical applications in

power engineering [20]. These curves also illustrate the

fact that the temperature profile of humid air depends

on the distribution function of droplets; for large en-

ough droplets this dependence has practically exponen-

tional character.

The change of the air relative humidity inside the

cooling tower is shown in Fig. 8. The air humidity

monotonically increases and reaches its maximum at the

cooling tower exit. The smaller size of droplets, the more

intensive are the processes of heat and mass transfer.

Therefore, a constant water flow rate as in Fig. 8, for

droplets with smaller radii the humidity increases more

rapidly.

For the constant water flow rate and the number

groups of droplets N ¼ 3, the influence of polydispersion

on the thermal efficiency of a cooling tower is shown in

Table 2. Due to the constant of the water flow rate only

two from three parameters N0, N1, and N2 are indepen-
dent. The values for Table 2 were obtained for Qw ¼ 2:6
kg/m2 s, u ¼ 2 m/s, H ¼ 2 m. In the first two columns of

Table 2 the ensemble-average radius is equal to 1.2 and

1.4 mm, respectively; in the remaining columns the av-

erage radius is equal to 1 mm. It is seen that at the same

average radius the polydispersity effects alter the value



2 . 0 2 . 5 3 . 0 3 . 5 u ,   m / s
0 . 0  

2 0 . 0

4 0 . 0

6 0 . 0

W ,   k g / s 3  

1 

2 

3 

Fig. 9. Specific flow power dissipation W vs. its velocity u. The
dependence is obtained for H ¼ 2 m, R0 ¼ 1 mm. Curve 1 is for

Qw ¼ 2:6 kg/m2s, curve 2 is for Qw ¼ 1:7 kg/m2s and curve 3 is

for no rain resistance (W (Jm/s) and u (m/s)).
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of the average thermal efficiency by ±1%. It is natural

that with decrease in the height of a cooling tower the

influence of polydispersity increases, because only small

droplets have time to be cooled. Similarly, as the hy-

draulic load increases the relative influence of the

droplets distribution function increases.

Since droplets of different radii cool down with dif-

ferent rates, water temperature fluctuations must be

observed on the pool surface. Indeed, because of the

casual nature of the space distribution of droplets, they

appear randomly in the fixed region of the pool surface.

Conducting measurements experimentalists note water

temperature fluctuations in the cooling tower pool [21].

As a measure of these fluctuations, we have calculated

the dispersion of water temperature Dt from of the

equation

Dt ¼
PN

i¼1ðTwi � hTwiÞ2 � QwiPN
i¼1 Qwi

:

For illustration, Table 3 presents calculated values of

the dispersion of water temperature for the conditions

given in Table 2. It is seen that when the radius distri-

bution function of droplet is rather wide (the 4th col-

umn) the temperature dispersion is rather large. For a

narrow distribution function, the dispersion is sharply

reduced. Thus, for different number of droplets in

groups, but at same average radius we have rather close

values of cooling tower thermal efficiency, however,

dispersions of the final temperature of droplets can be

rather different.

In the approximation of an average radius, we esti-

mate dissipation W of the kinetic energy of an air flow,

caused by friction of droplets against the ascending flow.

The specific dissipation W is directly proportional to the

specific mass water flow rate and, naturally depends the

radius on droplets and their height of fall. It can be

presented as the difference of the energy fluxes:

W ¼ Qw

v0ðR;HÞ2 � v1ðR;HÞ2

 �

2
; ð31Þ

where v0 (R,H ) and v1 (R;H ) are the velocity of water
droplets of radius R after their fall from the height H in
Table 3

Droplets temperature dispersion for different functions of dis-

tribution

Number of droplets,

N0 � 10�5
5 9 0.7 49 9.7

Number of droplets,

N1 � 10�5
5 0.1 12 0.1 9.7

Number of droplets,

N2 � 10�5
2 3.3 0.097 1.8 0.45

Water temperature

dispersion, Dt (�C)2
11.9 11.9 1.1 35.8 7.8
still air, and the velocity of the same droplets for the

same height of fall H , but under the condition of as-
cending air flow with the velocity u. For the cooling
tower height H ¼ 2 m, for initial droplets of radius

R ¼ 1 mm and for two values of the specific water mass

flow rates Qw ¼ 1:7 and 2.6 kg/m2 s, the dependence of

the specific dissipation W on the air velocity is shown in

Fig. 9. It is seen, that for the cooling tower performance

in a given aerodynamic mode, ‘‘the rain resistance’’ re-

quires substantial enhancement of the fan power, and

the higher the cooling tower, the greater is the contri-

bution of this resistance.

For a steady-state regime of the performance of a

mechanical draft cooling tower, the developed mathe-

matical model of evaporative cooling gives the flow rate

of evaporated water. We note that the higher the ve-

locity of air flow in the cooling tower, the larger its ef-

ficiency and larger flow rate of evaporated water. For

example, when the air velocity increases from u ¼ 2 m/s

up to 4 m/s, the thermal efficiency of the cooling tower

increases from 25% up to 33% (at the fixed radius R ¼ 1

mm, Tw0 ¼ 40:7 �C, Ta0 ¼ 23:4 �C, w ¼ 0:36, Qw ¼ 2:6
kg/m2 s). In turn, the flow rate of evaporated water in-

creases from 1.5% up to 3% of the flow rate of the water

in the cooling tower.
5. Optimization of the cooling tower performance

Optimization of the cooling tower performance is

one of the most important problems in the theory and
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engineering practice of evaporative cooling of water.

Some aspects of this problem are discussed in [22,23],

however it is necessary to carry out still great number of

theoretical and experimental investigations dealing with

creation of a control system for a cooling tower. In this

section we consider optimization of the performance of a

mechanical draft cooling tower [24] in the following

formulation of the problem: it is required to determine

the minimal air flow rate through the cooling tower (air

flow rate was increased discretely with a given step) for

reaching the given constant temperature T1 of the water
which leaving the cooling tower. Moreover, the initial

circulating water temperature and its flow rate are con-

sidered constant, and the temperature and humidity of

air are variable quantities. Thus formulation of the op-

timization problem reflects the practical problem of

maintenance of the thermal performance of some tech-

nological installation.

For determining the minimal air flow rate, the de-

veloped mathematical model (10)–(19) was solved by an

iterative method. At the given polydispersity of water

the problem of evaporative cooling was solved at an

arbitrary initial air flow rate. If the final temperature of

water Tw is higher than the given value of temperature
T1, the air flow rate is increased discretely at a given step.
This process was repeated until the condition Tw6 T1
was met. Some of the calculation results for this opti-

mization problem are presented in Fig. 10 for changing

temperature and humidity of the air surrounding the

cooling tower. The temperature T1 was equal to 22 �C;
and the air temperature was higher, equal to or lower

than T1. In the latter case, the role of evaporative cooling
is especially great. As it seen from Fig. 10, with increase

in the humidity of the atmospheric air it is necessary to

increase the air flow rate through cooling tower. The

higher the air temperature, the larger should be tangent

of the angle of the inclination of curves. This is con-
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Fig. 10. Optimal air velocity vs. its humidity: curve 1 is for air

temperature 25 �C, curve 2 is for air temperature 22 �C and

curve 3 is for air temperature 20 �C.
nected with the increasing of the role of convective heat

transfer. Note that the curve corresponding to Ta ¼ 22

�C ends when relative humidity is 0.65. This is due to the
fact that at large humidity the air flow rate becomes so

large that the droplets are entrained blow out by the

ascending air flow. This leads to a loss of water in a

cooling tower.
6. Discussion of results

For the counter-flow mechanical draft cooling tower

a one-dimensional mathematical model has been devel-

oped. It represents the boundary-value problem for a

system of ordinary nonlinear differential equations, de-

scribing interrelated heat and mass transfer processes

and the dynamics of fall of droplets. Moreover, our

model includes a distribution function of droplet radii.

The methods of solution of such problem is proposed,

computer code is created and numerical simulation is

made.

Qualitative estimations for thermal efficiency of spray

mechanical draft cooling tower are presented. In par-

ticular, it was shown that the thermal efficiency of the

cooling tower g depends essentially on the ratio H=R.
For a monodisperse ensemble of droplets in a me-

chanical draft cooling tower, the limits of applicability

of this approximation for the description of evaporative

cooling are determined. As a result of numerical exper-

iments it is demonstrated that the average thermal effi-

ciency depends practically only on the third moment of

the distribution function hR3i. Relative deviations of the
thermal efficiency can reach several percent. This con-

clusion makes the results of [25] more specific. It was

found that a variety of effects cannot be described well in

approximation of monodisperse ensemble of droplets,

and, in particular, the air temperature profile and water

temperature fluctuations on the surface of a water-col-

lecting pond.

The dependence of the thermal efficiency of a me-

chanical draft cooling tower on the ratio between the

mass flow rates of water and air is determined. For

mechanical draft cooling towers, this dependence is

weaker than for other types of cooling towers. For small

values Qw=Qa, when they change from 0.01 to 1, the

thermal efficiency of the cooling tower practically does

not change.

The flow rate of evaporated water has been reckoned

in the steady-state regime and it is shown that it can

reach 3% of the mass flow rate of water; with this value

depending on atmospheric pressure. The evaporation is

stronger at lower atmospheric pressure as diffusion co-

efficient of the water vapor increases.

The mathematical model of a control system for a

mechanical draft cooling tower at varying parameters of

air is developed. This model allows optimization of the
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cooling tower performance adjusting a fan power to

changing atmosphere conditions.

A method is developed for calculating of the dissipa-

tion of kinetic energy due to the friction of falling droplets

with an ascending air flow. In particular, it is shown that

the higher the cooling towers, the more substantial is this

dissipation. Predictability of ourmathematical model can

be enhanced by including two-dimensional aerodynamic

effects in a mechanical draft cooling tower. The work in

this direction is being carried out.

Mathematical model of mechanical draft cooling

towers with film flows of water is being now developed

based on the approach of [8]. The optimization of geo-

metric parameters and design of such cooling towers is a

vital problem for energy saving in industry, air condi-

tioning, etc.
Appendix A

In cooling towers the droplet radii distribution

function f ðRÞ is known very approximately as it depends
on many badly controlled parameters. Below, we con-

sider the problem of determining this distribution

function of droplets by means of the concept of the

maximum of the information entropy [26,27].

We define the distribution function f ðRÞ per unit of
the volume whose normalization is equal to unityZ 1

0

f ðRÞdR ¼ 1; ðA:1Þ

then the mass flow rate of water Qw per unit of the cross-

section can be presented in the form

4pNdv
3

Z 1

0

f ðRÞR3 dR ¼ Qw; ðA:2Þ

where v is the droplets velocity, Nd is the number of

droplets per unit volume. Moreover, we consider that

the initial velocities of all droplets are identical.

The distribution function has an important property,

namely

f ð0Þ ¼ 0: ðA:3Þ

For our problem, following [26,27], we enter the infor-

mation entropy S of the system under consideration as

S ¼ �
Z 1

0

f ðRÞ ln f ðRÞdR: ðA:4Þ

Such distribution functions, for which the informa-

tion entropy is extreme, more precisely describe experi-

mental situations with a shortage of information.

We will seek the distribution function of droplet ra-

dius from the condition of maximum of information

entropy (A.4) under condition of the conservation of

normalization condition (A.1), the mass flow rate of
water (A.2), and the average logarithm of droplets radii.

The average logarithm of droplets radii is defined asZ 1

0

lnR � f ðRÞdR ¼ const: ðA:5Þ

As it is shown below, Eq. (A.5) ensures the fulfillment of

expression (A.3). From the condition of maximum of S
and the fulfillment of Eqs. (A.1), (A.2) and (A.5), we

have expression for f ðRÞ:

f ðRÞ ¼ 1

Z
Rd expð�bR3Þ; ðA:6Þ

where

Z ¼
Z 1

0

Rd expð�bR3ÞdR: ðA:7Þ

The Lagrange multipliers d and b are determined from
of Eqs. (A.2) and (A.5). Our result differs from similar

one presented in [28].

Since the constant in (A.5) is unknown, the para-

meter d should be selected based on other consider-

ations. In particular, for existence of normalization of

the distribution function of droplet sizes, the parameter

d should satisfy the condition dP 2. Then, the form of

distribution function (A.6) qualitatively coincides with

the graph in Fig. 3. Further we accept, that the value

d ¼ 2. If the additional information about other mo-

ments of the distribution function of droplets is known,

then it is possible to find the type of the size distribution

function of droplets taking into account this informa-

tion.

If the parameter d in expression (A.6) is equal to 2,
then parameter b is easily determined from condition

(A.2). After integration we have

b ¼ 4pNdvqw
3Qw

¼ 1

hR3i ;

where hR3i is the average cube of radii of the droplets.
Thus the distribution function f ðRÞ can be presented in
the form

f ðRÞ ¼ 3R2

hR3i exp

� R3

hR3i

�
; ðA:8Þ

it is one-parametrical Weibull distribution [29]. The

maximum value of the distribution function is reached

at the radius value R ¼ 2ðhR3iÞ1=3=3. Thus, the average
radius is equal to 0:893hR3i1=3, and the average square of
the radius of droplets is equal to 0:9hR3i2=3.
For distribution function (A.8), we demonstrate our

method of discretization of the distribution function of

droplet radii. For simplicity we assume that hR3i ¼ 1

mm, v ¼ 0:5 m/s, Qw ¼ 2:6 kg/m2 s. For N ¼ 3, the

number of droplets in each of the ranges of division is

shown in Table 4. The total number of droplets of all



Table 4

Fraction of droplets for different ranges of radii vary

Range of separation, mm 0–0.5 0.5–1.5 1.5–3

Relative fraction of droplets

in given range

0.118 0.848 0.034
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Fig. 11. The number of droplets of given radius for the Weibull

distribution and its discretization. Curve 1 is based on Weibull

distribution function, curve 2 is an application of an discreti-

zation method.
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sizes is equal to Nd ¼ 1:241� 106. Calculation based on

our mathematical model gives the value of heat effi-

ciency g ¼ 65% and Dt ¼ 4:1, which practically coin-

cides with the data presented in Table 2. For illustration,

in Fig. 11 the number of droplets with the radii, smaller

than the given radius or equal to it, is shown for dis-

tribution function of droplet radius (A.8). These values

are also given for our method of the discretization of the

distribution function. For the discretization parameter

N ¼ 3, the characteristic features of the size distribution

function of droplet are transmitted not exactly. How-

ever, for the description of such integrated parameter as

the cooling tower thermal efficiency, the achieved accu-

racy is sufficient.
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